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Abstract
Visually-grounded spoken language datasets can enable models
to learn cross-modal correspondences with very weak supervi-
sion. However, modern audio-visual datasets contain biases that
undermine the real-world performance of models trained on that
data. We introduce Spoken ObjectNet, which is designed to re-
move some of these biases and provide a way to better evalu-
ate how effectively models will perform in real-world scenar-
ios. This dataset expands upon ObjectNet, which is a bias-
controlled image dataset that features similar image classes to
those present in ImageNet.

We detail our data collection pipeline, which features sev-
eral methods to improve caption quality, including automated
language model checks. Lastly, we show baseline results on im-
age retrieval and audio retrieval tasks. These results show that
models trained on other datasets and then evaluated on Spoken
ObjectNet tend to perform poorly due to biases in other datasets
that the models have learned. We also show evidence that the
performance decrease is due to the dataset controls, and not the
transfer setting.
Index Terms: spoken captions, dataset, speech, bias, retrieval

1. Introduction
Prior work in unsupervised spoken language learning has shown
that neural models can learn meaningful audio-visual corre-
spondences from visually grounded speech [1–3]. This mode
of learning is inspired by humans in early childhood, who learn
to use speech to describe the world before learning any written
language. In practice, this could allow audio-visual models to
learn from vast corpora of unlabeled images and videos.

However, many datasets in existence today, including
audio-visual datasets, contain intrinsic biases that the models
trained on those datasets then learn, which in turn degrades their
performance on real-world data. For example, most images and
videos uploaded to the Internet are nicely lit, well-framed, and
contain objects in their usual settings. In turn, image caption-
ing models are biased towards describing people on beaches as
happy and image classification models don’t recognize wolves
outside of a snowy backdrop [4].

ObjectNet, a large-scale bias-controlled object classifica-
tion dataset, addressed these problems by collecting a corpus
of entirely new images instead of relying on those already up-
loaded to the Internet in some form [5]. Workers were asked to
position a variety of household objects in a certain way against
a specified background. The viewpoint of the camera was also
controlled. In this way, ObjectNet has systematic controls in
place for some of the biases that most other datasets exhibit.

In this work, we introduce Spoken ObjectNet (SON),
a large-scale corpus of spoken image descriptions based on
the ObjectNet dataset. Our dataset addresses some of the
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biases present in existing audio-visual datasets. We intro-
duce our data collection pipeline, which includes a novel lan-
guage modeling step that increases the general quality and
acceptance rate of worker submissions. Lastly, we conduct
retrieval experiments to demonstrate that audio-visual mod-
els struggle to transfer to this bias-controlled domain, and
the decreased performance is due to the controls and not
just the transfer setting. We will release the dataset pub-
licly at https://groups.csail.mit.edu/sls/downloads/placesaudio,
and our code is available at https://github.com/iapalm/Spoken-
ObjectNet.

2. Related Work
2.1. Spoken Caption Datasets

Spoken captions of images were originally collected to build
models that learn to recognize words from semantic-level su-
pervision without any form of automatic speech recognition [6].
Many spoken caption datasets have since been collected, and
we show a comparison between them in Table 1. We fo-
cus on human-recorded captions in English, although spoken
captions have been collected in Hindi [7] and Japanese [8, 9].
The datasets mainly vary in modalities (images or videos) and
whether the speech is spontaneous or read from text captions.

The Places Audio Captions dataset [3] was the first large-
scale dataset of spontaneous captions, and it contains over 400k
spoken captions based on the Places 205 image dataset [10].
The captions were collected via Amazon Mechanical Turk, with
an average caption length of 20 words and audio duration of
10 seconds. Spoken ObjectNet shares a similar data collec-
tion framework and is approximately equal in average sequence
length and duration. However, Spoken ObjectNet is smaller in
scale than Places Audio Captions and also features the controls
for bias within the ObjectNet dataset. Spoken ObjectNet, then,
can function as a test set for models trained on Places Audio
Captions. Figure 1 shows samples from both datasets, demon-
strating the stark differences in images and captions.

Localized Narratives [11] is also a recently collected large-
scale spoken caption dataset with spontaneous speech. Several
other datasets exist, but they are based on previous text captions
and therefore contain fewer words on average per caption. The
Flickr Audio Caption dataset was one of the first datasets and
contains 40k read spoken captions based on the Flickr8k dataset
and captions [6, 12]. Spoken captions have been collected for
the Microsoft Common Objects in Context (MS-COCO) dataset
as well, which features over one million text captions for a va-
riety of images [13]. The SpokenCOCO [14] dataset contains
human-recorded captions, while other datasets contain synthetic
captions generated using text-to-speech systems [15, 16] which
are less natural. Synthetic spoken captions have also been col-
lected in other contexts [17, 18].

Researchers have recently collected spoken captions for
videos. QuerYD [19] features audio descriptions for video seg-
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Figure 1: Samples of images, spoken captions, and ASR transcripts from Spoken ObjectNet and Places Audio [3].

Table 1: Comparison of human-recorded spoken caption
datasets in English. Mod.=Modality; W./C.=Words per Cap-
tion; S.=Spontaneous; C.=Control for Bias.

Dataset Mod. Samples W./C. S. C.

QuerYD [19] Video 31,441 19.9 X 7
Spoken Moments [20] Video 515,912 18 X 7

Flickr Audio [6] Image 40,000 10.9 7 7
SpokenCOCO [14] Image 605,495 10 7 7
Loc. Narratives [11] Image 873,107 36.5 X 7

Places Audio [3] Image 402,385 21.9 X 7
Spoken ObjectNet Image 50,273 20.5 X X

ments annotated via YouDescribe, a volunteer-based commu-
nity that adds narration to existing YouTube videos. Spoken
Moments [20] contains spoken captions of 3s action video clips
from Moments [21].

Lastly, several video datasets exist without spoken captions
but can still be used to learn audio-visual representations. The
How2 [22] and HowTo100M [23] instructional video datasets
naturally contain spoken descriptions of visual events. Au-
dioSet [24] and VGG-Sound [25] are both video datasets useful
for audio-visual recognition tasks. Videos in VGG-Sound were
selected and filtered using CNNs to curate a dataset with several
hundred object classes. Similarly, we use automated language
modeling checks in our data collection pipeline.

2.2. ObjectNet Dataset

The ObjectNet dataset is an object detection test set collected in
a way which explicitly controls for object viewpoints, rotations,
and backgrounds. Removing these priors from the images re-
sults in significant performance drops (approximately 45% for
most models) versus performance on the ImageNet test set. The
purpose of ObjectNet is to enable models that are more robust
to real-world scenarios where objects may be in unusual con-
texts; similarly, the purpose of Spoken ObjectNet is to provide
a test set for audio-visual models to measure how robustly they
generalize to real-world situations.

2.3. Audio-Visual Models

Models for learning audio-visual correspondences typically
learn an embedding space where true visual inputs and spo-

ken caption pairs are close, while non-matching pairs are far
apart. In this work, we consider the ResDAVEnet [26] archi-
tecture which combines CNN-based audio and image models.
The ResDAVEnet-VQ [27] architecture adds configurable vec-
tor quantization layers to the audio model. Several other models
that learn audio-visual correspondences from both images and
videos have been presented in recent work [28–32].

3. Spoken ObjectNet Dataset Collection
To collect samples for this dataset, we extended the approach
used to collect the Places Audio Caption dataset [3]. We re-
leased an Amazon Mechanical Turk (AMT) Human Intelligence
Task (HIT), which allowed workers to submit captions for four
images in the ObjectNet dataset at a time. Workers were com-
pensated $0.20 for four recordings that passed our validation
steps. Workers were prohibited from submitting more than
3,000 HITs to prevent speaker bias from impacting the dataset.

During data collection, workers were given an image and
asked to record themselves as if they were describing the image
to someone who could not see it. Workers were told they could
describe shapes, objects, locations, colors, and anything else of
interest as they saw fit. After each recording was completed, we
ran several validation steps on the recorded audio to ensure that
it met our requirements. If a worker failed a validation step, they
were immediately asked to redo the recording. We found that
providing this feedback in real time, as opposed to rejecting the
HIT outright hours or days later, increased the rate at which we
could collect high-quality samples and improved the experience
for workers. After four recordings were completed, workers
could submit the assignment and proceed to the next HIT.

3.1. Validation

Each recording had to pass three checks in order for the worker
to proceed to the next image. First, the recording had to be at
least 1s in duration. This prevented workers from simply click-
ing through the screens as fast as possible in order to complete
the task. The recording was also run through the Google Speech
Recognition API to generate an ASR transcript of the recording.
We required that each recording have at least four words in the
transcript to be accepted. This prevented workers from record-
ing silence or other non-speech sounds.

Lastly, we introduced a new step in which the ASR tran-
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Table 2: Vocabulary comparison of Spoken ObjectNet (SON-
50k) and Places Audio (including our 50k split Places-50k).

Dataset Audio Words Nouns Verbs Adj. Adv.

SON-50k 155h 18,780 11,666 3,252 2,324 478
Places-50k 115h 20,140 11,212 4,332 2,963 620

Places-400k 944h 51,764 27,074 11,293 8,271 1,660

script was fed into a BERT model with a language modeling
head. We used this model to produce a numerical score to ap-
proximate how well-formed the ASR text was. The model was
a BertForMaskedLM model from the Python Huggingface
library [33], and our score is based on the cross entropy loss
between the model’s predictions based on the masked input to-
kens and the ground truth tokens. Any transcript that scores
above a certain threshold (where higher scores are predicted to
be less grammatical) failed the validation step. Given the un-
usual contexts of the objects and the potential for ASR errors,
a low cutoff score could frustrate workers who were attempt-
ing to complete the task properly, so we used existing collected
samples to measure a cutoff score that would prevent blatantly
non-grammatical captions from passing. Overall, this approach
increased average caption quality, increased our HIT acceptance
rate, and reduced the amount of manual validation that was re-
quired.

3.2. Speaker Information

In practice, audio-visual models may learn information about
the speaker’s microphone instead of the content of the speech
signal. If a worker annotated examples of primarily one class
(e.g. all images from the measuring_cup class), the model
could exploit that correlation during training to make predic-
tions without ever learning from the spoken words. To combat
this, speakers were presented with images in a random order, so
models cannot exploit speaker information to predict class iden-
tity. The train, validation, and test splits were also constructed
such that there is no speaker overlap between any of the sets.

3.3. Finalizing Splits

In total, we collected over 70,000 samples. One sample per
image in ObjectNet was selected to form the Spoken ObjectNet-
50k dataset, with a total of 50,273 samples. 48,273 are included
in the training set, and 1,000 are included in both the validation
and test sets. We compare the vocabulary of the dataset with
Places Audio [3] in Table 2, where we find that our captions
contain a similar part-of-speech distribution to a split of Places
with 50k captions.

4. Retrieval Experiments
4.1. Experimental Setup

Because Spoken ObjectNet is best understood as a test set rela-
tive to a dataset like Places Audio [3], our experiments are based
on these two datasets. We also created a split of Places Audio
that is the same size as Spoken ObjectNet, with 48,273 training
samples randomly selected from the original 400k and the same
1,000 sample validation set as the original Places Audio. This
split allows us to control for data quantity in our experiments,
and we refer to the split as Places-50k and to the full training
set as Places-400k. All experiments used the datasets’ training
sets to train models and the validation sets to evaluate models
(as Places Audio does not have a predefined test set).

Figure 2: Top 3 retrieved audio captions for two sample images.
The true caption for the image is boxed in green.

We conducted both audio to image and image to audio re-
trieval experiments, where a model is tasked with retrieving the
most similar images to a given audio caption, and vice versa.
We report two results, recall at 1 and recall at 10 (R@1 and
R@10, respectively). For R@N, the model is successful if any
of the top N recalled images are the correct match to the given
audio caption (and vice versa for image to audio retrieval).

We tested frozen and trainable image branches, where
freezing the image branch means prohibiting the parameters
from being modified via backpropagation so that only the audio
model and embedding layers are trained. We define embedding
layers as the light-weight layers (ie. linear or non-linear projec-
tions) after the backbone layers (ie. convolutional or attention
layers). The ObjectNet license prohibits training model param-
eters on images in the dataset, and the frozen setting complies
with this restriction. We also compared image branches pre-
trained on ImageNet [34] versus randomly initialized.

4.2. Implementation Details

All models were trained for 150 epochs with a batch size of 64
using the Adam optimizer [35]. Every epoch we evaluated the
model on the validation set, and the best performance out of the
150 epochs is reported. The learning rate depended on whether
the image branch was frozen or not. For trainable image branch
experiments, we use a learning rate of 2 · 10−4 following [27].
For frozen image branch experiments, a larger learning rate of
10−3 produced the best results. Also, the learning rate expo-
nentially decayed by a factor of 0.95 every 3 epochs. For all
other hyperparameters and data processing, we followed [27].

4.3. Transfer from Places Audio to Spoken ObjectNet

To understand how the bias controls in Spoken ObjectNet im-
pact transfer performance from other spoken caption datasets,
we ran transfer learning experiments with a model trained on
Places Audio [27]. We used the ResDAVEnet model trained on
Places-400k which achieved a mean R@10 of 0.735 on the val-
idation set. There are two ways in which Spoken ObjectNet can
be used as a test set: the first is for evaluating zero-shot perfor-
mance (where the model undergoes no fine-tuning on Spoken
ObjectNet), and the second is for evaluating performance after
fine-tuning with a frozen image branch (where only the audio
and embedding layers are fine-tuned). We also report the re-
sults of an experiment in which the entire image branch was
made trainable and thus fine-tuned, strictly for comparison, as
this setting will be prohibited due to ObjectNet’s license.

The results are shown in Table 4. In the zero-shot setting,
the model’s mean R@10 performance decreases from 0.735 on
Places to 0.118 on Spoken ObjectNet. This shows that the
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Table 3: Comparison of training on Spoken ObjectNet (SON) versus Places-50k.

Frozen image branch Trainable image branch

I −→ A A −→ I Mean I −→ A A −→ I Mean

Dataset Pretraining R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10

SON ImageNet 0.064 0.291 0.060 0.268 0.062 0.279 0.066 0.315 0.089 0.332 0.077 0.324
Places-50k ImageNet 0.093 0.364 0.079 0.360 0.086 0.362 0.067 0.306 0.081 0.335 0.074 0.321

SON None - - - - - - 0.017 0.123 0.016 0.132 0.017 0.128
Places-50k None - - - - - - 0.027 0.139 0.026 0.145 0.026 0.142

Table 4: Transfer learning experiments from Places-400k to
Spoken ObjectNet in the following settings: (1) No Fine-tuning
(Zero-shot); (2) Fine-tuning (Frozen image branch); (3) Fine-
tuning (Trainable image branch).

I −→ A A −→ I Mean

Setting R@1 R@10 R@1 R@10 R@1 R@10

(1) 0.019 0.096 0.033 0.140 0.026 0.118
(2) 0.040 0.216 0.048 0.213 0.044 0.214
(3) 0.102 0.391 0.115 0.416 0.108 0.403

model trained on Places can be directly applied to Spoken Ob-
jectNet, but the performance is much lower. Fine-tuning the
model with a frozen image branch recovers some of the perfor-
mance, up to a 0.214 mean R@10. When the image branch is
made trainable, the performance increases to a mean R@10 of
0.403. These experiments show that the controls for viewpoint,
rotation, and background make it difficult for the image model
(trained on Places-400k) to meaningfully featurize the images
in Spoken ObjectNet, as fine-tuning the embedding layers and
audio model without fine-tuning the entire image model was not
enough to recover the performance of the fully-trainable model.

4.4. Comparison of Spoken ObjectNet and Places Audio

Table 3 compares the relative difficulties of Places-50k and Spo-
ken ObjectNet (SON), where the datasets are matched in size.
By running these experiments, we provide additional evidence
that the difficulty of Spoken ObjectNet (and the performance
drop shown in the transfer setting) is due to the controls for bias.
In the frozen image branch setting, the model trained on Spoken
ObjectNet performs significantly worse than the model trained
on Places-50k based on mean R@10. These results indicate
that the ImageNet-pretrained image model is more effective for
Places-50k than Spoken ObjectNet when it is kept frozen.

In the second half of Table 3, we show the results of two
pairs of experiments in which the image branch was trainable.
While this setting will be prohibited due to ObjectNet’s license,
we show the results to give insight on the difficulty of Spo-
ken ObjectNet versus Places. In the first experiment, the im-
age branch was pretrained on ImageNet. In this experiment,
the performance of the model trained on Spoken ObjectNet in-
creases by approximately 20% relative to its frozen counterpart.
However, the model trained on Places-50k with a trainable im-
age branch actually decreases in performance compared to the
frozen image branch model. This decrease in performance is
surprising, and as a result the mean R@10 scores of both mod-
els are roughly equivalent. This is likely due to the class overlap
between ImageNet and ObjectNet. With a relatively small num-
ber of training samples, the model is able to learn enough about
the viewpoint, rotation, and background controls applied to ob-
jects it already knows about to increase its performance. On

the other hand, when the parameters of the Places-50k image
model are adjusted on a relatively small set of Places images
it results in a featurizer that performs worse than the original
frozen ImageNet-pretrained model.

In the second experiment, the image branch was still fully
trainable, but not pretrained on ImageNet. The model trained
on Places-50k slightly outperforms the model trained on Spo-
ken ObjectNet, but by a small margin. This shows that without
any prior training on any other datasets, and thus without lever-
aging biases learned from other datasets, Spoken ObjectNet and
Places-50k are comparable in difficulty to learn from.

Finally, we show qualitative retrieval results in Figure 2 for
the model trained and evaluated on Spoken ObjectNet. In these
examples, the model retrieves several relevant captions for each
image, including the true caption for the first image. However,
the relevance of the other captions could be improved.

5. Conclusion
We introduce Spoken ObjectNet as a bias-controlled spoken
language dataset designed to function as a “test set” for audio-
visual models. To use the dataset, we suggest training an audio-
visual model on some other dataset first. To evaluate the per-
formance of the model in a bias-controlled setting, evaluate the
model on the provided 1,000 sample evaluation set. To account
for the different classes in ObjectNet and to therefore improve
performance slightly, the model’s embedding layers and audio
model may be fine-tuned on the Spoken ObjectNet training set.
As with the original ObjectNet dataset, training model parame-
ters on the images is prohibited.

Spoken ObjectNet exposes the performance gains that mod-
els gain from the priors baked into many modern datasets. Our
hope is that Spoken ObjectNet can provide inspiration for re-
searchers to explore model architectures that are more robust to
priors in data and therefore more likely to generalize to real-
world scenarios.
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