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Abstract

Visually-grounded spoken language datasets can enable models to learn cross-modal
correspondences with very weak supervision. However, modern audio-visual datasets
contain biases that undermine the real-world performance of models trained on that
data. We introduce Spoken ObjectNet, which is designed to remove some of these
biases and provide a way to better evaluate how effectively models will perform in
real-world scenarios. This dataset expands upon ObjectNet, which is a large-scale
image dataset that features controls for biases encoded into many other common
image datasets.

We detail our data collection pipeline, which features several methods to improve
caption quality, including automated language model checks. We also present an
analysis of the vocabulary of our collected captions. Lastly, we show baseline results
on several audio-visual machine learning tasks, including retrieval and machine cap-
tioning. These results show that models trained on other datasets and then evaluated
on Spoken ObjectNet tend to perform poorly due to biases in other datasets that the
models have learned. We also show evidence that the performance decrease is due
to the dataset controls, and not the transfer setting. We intend to make our dataset
openly available to the general public to encourage new lines of work in training
models that are better equipped to operate in the real world.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Motivation

Countless datasets have been developed and used at large scales to train machine

learning models. Very few of these datasets, however, make an effort to control for

implicit biases in the data. In turn, models learn these biases, and their performance

often suffers in the real world as a result. The fundamental issue is that many popular

datasets are constructed via large-scale web scraping, which selects for the sort of data

that would be uploaded to the internet in the first place. As a result, the majority

of image classification datasets are comprised of objects that are well-lit, in their

usual contexts, and photographed from a familiar viewpoint. When presented with

real-world examples that may not have any of those characteristics, models that

achieve state-of-the-art performance on existing datasets are often reduced to pre-

deep learning performance levels.

Simultaneously, neural networks have been shown to learn complex audio and

visual representations in weakly supervised settings. As models learn more directly

from data with less supervision, the removal of biases in the data becomes all the more

important. One such setting is the pairing of images with spoken audio captions that

describe the contents of the image. Just from that pairing, neural audio-visual models

can learn to correspond objects and sounds in the waveform. A visual reference or

grounding is in many ways essential to developing a true understanding of language:
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after all, a model could read thousands of books and never understand what the color

red is. It is important, then, that there exists a bias-controlled audio-visual dataset

from which models can learn these correspondences with as few intrinsic biases as

possible.

1.2 Problem Description

There has been prior work focused on creating bias-controlled image classification

datasets. Separately, there are a number of popular spoken caption datasets. How-

ever, very little work has focused on the intersection of these two endeavors. Because

there is no available bias-controlled large-scale dataset in this space, it is extremely

difficult to evaluate how effectively a model will perform in the real world.

Our primary contribution is a novel spoken captions dataset based on ObjectNet,

an existing bias-controlled image dataset. Like several other datasets in existence, it

features both images and a spoken language audio track in which humans describe

what they see in the image. Unlike any other audio-visual datasets in existence, our

dataset features controls for biases in the image domain. This has the potential to

serve as a test set that is indicative of performance in the real world, which is not

always true of held-out data.

Collecting data at this scale poses a significant challenge, so we developed several

tools to improve the automated evaluation of worker submissions and increase the

rate at which we could manually inspect parts of the dataset. We also developed

another large-scale crowdworking task that improved the quality of the text captions

associated with each spoken language recording.

To ensure that neural models perform as expected on the dataset, we conducted

a series of retrieval and machine captioning experiments and compared the results

against equivalent experiments on other datasets. This comparison provides a proof-

of-concept that the dataset is difficult for the right reasons: it has controls in place

for the biases present in other datasets, not because the data is low-quality. We show

results in a variety of settings to explore the effect that different training regimes and
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model restrictions have on performance.

1.3 Contributions

Our contributions towards this challenge include the following:

• We present Spoken ObjectNet, a novel large-scale bias-controlled spoken cap-

tions dataset collected via a crowdworking task.

• We describe novel contributions to our data collection and evaluation pipeline

that improved the quality of captions and reduced the amount of manual in-

spection that was required to create the dataset.

• We present an analysis of the audio samples and their corresponding text tran-

scripts, giving an overview of the dataset and comparing it against other existing

datasets.

• We describe an additional crowdworking task used in conjunction with cap-

tion collection in which workers were asked to correct the automatic speech

recognition transcripts of spoken language samples in our dataset.

• To evaluate the dataset, we show a series of retrieval and machine captioning

experiments and compare the results against equivalent experiments on other

datasets.

1.4 Outline

In Chapter 2, we discuss works related to several common audio-visual machine learn-

ing tasks. This includes audio-visual models, datasets, and evaluation techniques. In

Chapter 3, we discuss the techniques used to collect the dataset via a crowdwork-

ing task. This chapter includes an analysis of a novel language modeling step used

for data validation. Chapter 4 presents an analysis of our collected dataset and a

comparison of it and other popular audio-visual datasets. In Chapter 5, we continue
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our analysis of the dataset via a series of image and audio retrieval experiments. We

compare results on our dataset with results on other audio-visual datasets to show the

unique debiasing that our dataset possesses. Chapter 6 presents additional machine

captioning experiments comparing our dataset and other datasets. Lastly, Chapter 7

presents future directions for this work.

16



Chapter 2

Related Works

2.1 Audio-Visual Caption Datasets

The Places Audio Captions dataset (Harwath et al., 2018) is the most similar existing

dataset to Spoken ObjectNet, and features spontaneous speech about images in the

Places 205 dataset (Zhou et al., 2014). While many other datasets ask workers to

describe the contents of images via text descriptions (and then have other workers

read those text fragments out loud), the creators of Places Audio Captions find that

asking crowdworkers to describe an image verbally with a prompt to simply “describe

what you see” produces captions that have significantly more detail. As a result, the

average number of words in this dataset is significantly higher than in other datasets

with non-spontaneous speech.

Beyond the dataset itself, we used some of the infrastructure developed by the

creators of Places Audio Captions to develop our Amazon Mechanical Turk (AMT)

task. Their toolkit uses a Flask web server to host a task on AMT, then run a series

of validation scripts and save the completed recordings to disk. Our extensions to

this software toolkit are described in a later section.

Microsoft Common Objects in Context (MS-COCO) (Lin et al., 2014) is one of

the most popular image classification and image captioning datasets. Its captioning

dataset features 5 captions per image for each of the 330,000 images in the dataset.

While MS-COCO is one of the largest-scale image captioning datasets in existence,
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its captions are text-based, making it of limited use to recent work in directly learning

audio-visual correspondences from paired speech and images. There have been several

efforts to develop spoken captions for MS-COCO, however. The first, called SPEECH-

COCO (Havard et al., 2017), uses text-to-speech software to create a corresponding

audio recording for each of the text captions. The authors go to some lengths to

make the automatically generated captions more natural, adding disfluencies and

changing the rate of speech for some recordings. These captions are still less natural

than human recordings, however. Over 600,000 human recordings were collected in

SpokenCOCO (Hsu et al., 2020), and while these recordings improve upon the text-to-

speech results, they are fundamentally limited by their non-spontaneity. As a result,

SpokenCOCO is the most recent and most natural spoken caption dataset based on

MS-COCO, but it has fewer words per caption than Places Audio Captions.

Flickr8k Audio Captions (Harwath & Glass, 2015) is similar to SpokenCOCO in

that the captions are non-spontaneous, and the dataset is significantly smaller in scale

than SpokenCOCO at 5 captions each for 8,000 images. It is based on the Flickr8k

caption dataset (Rashtchian et al., 2010). The authors collected those captions via

Amazon Mechanical Turk, asking workers to read a text caption (collected in a prior

work by different authors) aloud. While the non-spontaneity and limited size of

the dataset make it of limited use to our particular project, the dataset has use in

pretraining and testing the transfer performance of audio-visual models.

The Localized Narratives (Pont-Tuset et al., 2020) dataset augments spoken cap-

tions with a visual grounding in the form of mouse pointer tracking. Workers are

asked to simultaneously describe an image out loud and move their mouse pointer

to the region of the image that they are referencing in their speech. This provides

a strong grounding for audio-visual models and requires less human annotation than

bounding boxes or other manual geometric labels. Overall, the creators of the Lo-

calized Narratives dataset find that this technique produces detailed captions and

high-quality visual grounding for each of the 873,107 samples in the dataset.

QuerYD (Oncescu et al., 2021) is a large-scale dataset containing videos with two

audio tracks: the original audio, and a spoken description task collected via volunteers
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on the YouDescribe service. The service is designed to assist visually-impaired people

use YouTube by providing a spoken closed-captioning track to existing YouTube

videos. Because the captions are created by volunteers, QuerYD contains high-quality

descriptions. Unlike Places Audio Captions, the visual domain has videos. This makes

the dataset most useful for video retrieval and localization tasks.

There are also datasets, such as AudioSet (Gemmeke et al., 2017) and VGG-

Sound (Chen et al., 2020), that are useful primarily for audio-visual prediction tasks

and audio recognition tasks. AudioSet is curated from YouTube videos, which are

split into 10 second clips that contain a certain sound. VGG-Sound is also collected

from open-source video libraries, but the authors use a series of convolutional neural

network-based filters to select for high-quality samples. Although our implementation

is very different, Spoken ObjectNet also uses neural networks as filters for incoming

data, as described in Chapter 3.2. In general, though, Spoken ObjectNet is intended

to be used to train models for different tasks than AudioSet or VGG-Sound.

2.2 Visual Datasets

ImageNet (Deng et al., 2009) is a large-scale image classification dataset that is widely

used as a benchmark for image classification models as well as a pretraining dataset

for convolutional neural networks. It has several million images across 1,000 object

classes. The test set contains 50 samples for each of the 1,000 classes. In our exper-

iments, we use ImageNet primarily as a pretraining dataset for audio-visual models

that are later trained on the Places 205 dataset or directly evaluated on Spoken

ObjectNet.

The ObjectNet (Barbu et al., 2019) dataset is an object detection dataset designed

to be of a similar size to the ImageNet test set, with 50,273 images. Because it was

collected entirely via crowdworking, the authors could explicitly control for object

viewpoints, rotations, and backgrounds in the collected image. Workers would be

instructed to find a household object out of several hundred classes, then place it in

a specified area of the house (like washroom, bedroom, or kitchen). Explicit instruc-
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tions on the rotation of the object and the viewpoint of the camera were also provided.

The dataset therefore avoids the potential biases introduced into the dataset by col-

lecting existing images from the Internet. To fully realize the dataset’s intended use

as a test set, the authors take the additional step of prohibiting models from learning

from the images in ObjectNet. Users can instead measure the transfer performance

of models trained on other datasets and then evaluated on ObjectNet. In this setting,

the authors find that most state-of-the-art image classification models suffer a perfor-

mance drop of about 40% versus their performance on the ImageNet test set. Overall,

ObjectNet provides a more realistic assessment of how well an image classifier will

work in the real world.

2.3 Captioning Datasets

As mentioned previously, MS-COCO Captions (Chen et al., 2015) is one of the most

popular datasets for image captioning. It has 5 captions per image and 120,000

images, with an average length of 10 words per caption. The captions were produced

by paid annotators on a crowdworking platform. The scale of this dataset makes it

one of the most popular sources of image captioning training data, although it has a

relatively small number of object categories and has been overtaken in recent years

by larger-scale datasets.

The Google Conceptual Captions Dataset (Sharma et al., 2018) is one of the

largest-scale captioning datasets in existence. It was gathered by scraping existing

images and alt-texts from the Internet, so the images are weakly labeled (using a

computer vision system) and the alt-texts vary in quality depending on the website.

However, they use a novel pipeline that extracts and filters the raw image/caption

pairs before creating the final dataset. This approach improves the image/caption

correspondences in the final dataset. They report an average of 10.3 tokens per

caption in the training set.

Lastly, the VizWiz dataset (Gurari et al., 2020) uses images taken by vision-

impaired users. Because many image captioning services are deployed to assist vision-
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impaired people navigate the world, it is important that there exists a dataset with

images that are representative of the real world. In that sense, the images in the

VizWiz dataset look similar to those in ObjectNet: they are sometimes blurry, poorly-

lit, or feature objects in unusual orientations. VizWiz has 5 captions per image for

each of the 39,181 images in the dataset, so it is approximately the same size as

ObjectNet. The authors of VizWiz split the data into training, validation, and test

sets. They report an average of 13 words per caption in the dataset, greater than

those of MS-COCO Captions or the Google Conceptual Captions Dataset.

2.4 Audio-Visual Models

There are several neural models that can directly learn audio-visual correspondences

from paired visuals (either images or videos) and spoken language. ResDAVEnet (Har-

wath et al., 2018) uses two convolutional neural networks to jointly embed images and

audio captions into a shared embedding space. Their unique contribution is that the

images and audio are embedded spatially as well as temporally, enabling models to

co-localize image and audio features. While this allows the model to simply retrieve

corresponding images and audio captions, the authors of Harwath et al. (2018) show

that the model learns object and word localization as a result of its training objective.

The image branch of ResDAVEnet is adapted from the ResNet50 (He et al., 2016)

architecture, but in ResDAVEnet the final softmax and fully-connected layers area

removed and replaced with a 1x1 convolutional layer. This layer projects the model’s

features into the desired embedding dimension. The audio branch is a 17-layer fully

convolutional model with residual connections. Audio samples are converted into log

Mel-frequency spectrograms.

The model used in this paper is an extension of the ResDAVENet architecture

that adds multiple vector quantization (VQ) layers (Harwath et al., 2020). VQ layers

act as a bottleneck, constraining the amount of information that is passed on to

the next layers. ResDAVEnet-VQ has a total of five VQ layers, and each can be

independently activated or deactivated. ResDAVEnet-VQ is trained with a triplet
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loss, which combines random sampling of negative examples and semi-hard negative

mining (Jansen et al., 2018). For simplicity, we do not explore the use of any of the

VQ layers in our experiments.

AVLnet can learn correspondences between spoken words and visual content in

videos, all in a self-supervised setting. In that way, it extends models like ResDAVEnet-

VQ by adding a temporal dimension to the image branch. It can learn audio-visual

correspondences from videos, specifically instructional videos from YouTube and other

open source video websites, via datasets like HowTo100m (Miech et al., 2019) and

YouCook2 (Zhou et al., 2018).

2.5 Transformers

In recent years, transformer-based models have exceeded the performance of tradi-

tional recurrent or convolutional neural network-based models in almost every major

NLP task. BERT (Bidirectional Encoder Representations from Transformers) (Devlin

et al., 2019) is one of the most popular transformer models. It has been shown to be

surprisingly versatile, performing at state-of-the-art (at the time) in question answer-

ing and natural language inference challenges. BERT introduces a masked language

modeling training objective, which allows the transformer to be trained bidirection-

ally. Word embeddings generated by BERT are useful in a variety of downstream

tasks, and BERT can be extended to many other tasks by simply replacing the final

layer with a new layer and fine-tuning.

2.6 Captioning Models

Based on BLEU (Papineni et al., 2002) score, the current state-of-the-art model as

tested on MS-COCO Captions is Oscar (Li et al., 2020), a multi-layer transformer-

based vision and language system. The models are pretrained on a large image-text

corpus, where each sample is a triple of the sequence of words, a set of object tags, and

image features. The authors find that the object tags, which are generated using a
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simple convolutional neural network, provide an additional visual grounding that the

model can take advantage of during training. This association results in better learned

representations and, as a result, good performance on a number of downstream tasks,

including retrieval, image captioning, and visual question answering.

However, there are several challenges associated with this model in particular.

Because it is transformer-based, it contains many more parameters than traditional

CNN/RNN-based captioning models. This makes it more difficult and time-consuming

to train. Additionally, while the authors have released source code for the model

and CNN-generated object tags for MS-COCO, they have not released preprocessing

source code. This makes it very difficult to replicate their methodology on another

dataset. Because we were more interested in measuring performance differences across

datasets rather than achieving state-of-the-art performance on one dataset, we chose

not to use Oscar in our experiments.

Instead, we implemented a CNN/LSTM-based model with self-critical sequence

training, as described in Rennie et al. (2017) and Luo et al. (2018). This model

achieves a slightly lower but comparable BLEU score to Oscar on MS-COCO captions.

It is also smaller, easier to train, and requires less preprocessing than Oscar, making

it ideal for our experiments. The authors introduce a technique for optimizing image

captioning systems using reinforcement learning. In self-critical sequence training, a

REINFORCE (Williams, 1992)-like algorithm (with some modifications) is used to

optimize for CIDEr (Vedantam et al., 2015) score during decoding. At the time, this

technique was the state-of-the-art on the MS-COCO captions test set, and remains

one of the best non-transformer models. Because of its relatively high performance,

availability of source, and ease of training, we decided to use this model in our image

captioning experiments.
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Chapter 3

Dataset Collection

3.1 Crowdworking Task

Our intent for the first round of data collection for Spoken ObjectNet was to collect

one spoken caption per image in the dataset, for a total of 50,273 captions. Because of

the scale of the dataset and the importance of having a variety of speakers for models

to learn from, we chose to use Amazon Mechanical Turk to collect the data. Amazon

Mechanical Turk (AMT) is an online marketplace that allows requesters to submit

jobs to the global public. Each job has a certain pre-determined pay rate and an

estimated work load. Requesters can set certain requirements for workers to be able

to accept the jobs, such as geographic requirements, previous assignment acceptance

rates, and specialized training that workers must complete before attempting the

task. Each task is referred to as a Human Intelligence Task, or HIT. Workers often

complete many HITs at the same time, and requesters commonly submit thousands

of HITs to AMT at one time. For our purposes, AMT provided the scale and platform

from which we could collect samples for Spoken ObjectNet.

The toolkit we used to host and review the tasks was based on the tool used

by the authors of Harwath et al. (2018) to collect audio samples for Places Spoken

Captions. The tool was built on a WSGI and nginx server to enable multithreading

and maintain high performance even as many users are simultaneously submitting

HITs, which was important in our use case. The server itself was written in Python
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and used Flask and the AWS boto3 library to serve questions to workers. The worker

interface on AMT is shown in Figure 3-1, and the instructions (shown above the

interface) are included in Appendix A.1.

Figure 3-1: The Amazon Mechanical Turk interface that workers used to record
captions for ObjectNet images. Workers could reference the example on the right as
they captioned the image on the left.

First, each task was assigned a unique URL. Each task was comprised of four

total images, and those assignments were deterministically generated when the Flask

server intitialized. The webpage itself consisted of a set of instructions, followed by

an image to caption and a recording prompt. One example was provided so workers

would have a general idea of the amount of detail we were looking for in recordings.

The unique URL determined the images that would be loaded, so no two tasks loaded

the same images.

The tasks were then submitted to AMT using the boto3 library. Using the task

to URL mapping generated when the webserver initialized, each task’s URL was em-

bedded into a boto3 ExternalQuestion and launched as a HIT on AMT. As workers
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completed the HITs, their recordings were validated in real time (as described in

Section 3.2). If a worker did not pass the validation steps, they were immediately

asked to retry the recording. If they did pass the validation steps, they were either

prompted to complete the next recording (out of four total) or prompted to sub-

mit their completed HIT. When a worker submitted a HIT, the audio, automatic

speech recognition transcript, and metadata were serialized into a JSON package and

returned to the Flask server.

Automatic speech recognition (ASR) was applied to every recording before the

validation step took place. We used the Google SpeechRecognition library to gen-

erate approximate transcripts of the speech samples. While imperfect, these ASR

transcripts provided us with a useful piece of information during the validation step.

By bundling the transcript with the rest of the data in the final JSON package, we

also saved time on having to run ASR later in the process.

Once submitted, the HITs were held for a manually-initiated review step. Every

collected sample could either be inspected manually, or passed/failed based on the

validation steps computed at the time of the recording (see Section 3.2). In practice,

the number of samples being collected at a time meant manual inspection was im-

practical, and instead we focused on tuning the automatic validation steps to pass

only samples that met our acceptance criteria. Once accepted, the audio files and

ASR transcripts were written to disk, and sorted by image. Metadata, including the

worker ID and HIT ID, was added to a database. If a sample was rejected during

review for any reason, the recording was moved to another separate folder on disk

and the metadata was still retained.

3.2 Validation

After workers submitted a recording for an image during the HIT, the recording was

passed to our validation engine. Rather than evaluate responses after the entire HIT

was submitted, our data collection tool runs a validation step in real time. This

improves the experience for workers, who are given more direct feedback about their
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work and can adjust their work if they are not meeting our criteria for acceptance. It

also ensures they are not disappointed if, for example, their work is rejected several

days later without an explanation. Real-time feedback also benefits data collectors,

who can accept a much higher percentage of submitted work.

We added a novel language modeling feature to the data collection tool’s original

validation procedure, which further improved the quality of data that we collected.

The motivation for this language modeling step came in the early stages of data

collection. Some of the HIT submissions we received were from workers who found a

way to submit HITs that would be automatically accepted but that did not actually

solve the task. Usually, these submissions contained garbled English words in a

seemingly random order. These words would be detected in the ASR step, and any

submission that had at least four words in its ASR transcript and was at least one

second long would pass the original validation steps. We therefore needed a way to

distinguish between well-formed English text and the malformed submissions that we

would sometimes receive.

To solve this challenge, we added a language model to the validation pipeline. The

language model is a BERT (Devlin et al., 2019) transformer with a language modeling

head from the huggingface (Wolf et al., 2020) library. At a high level, the language

modeling step masks one token at a time in the input and measures the probability

that the model predicts the correct word in the masked location. We then compute

the cross entropy loss between the ground truth and predictions for every token, and

lastly we sum the log probabilities together to compute a final scalar loss. Given a

sequence of tokens 𝑠 and a model M, we compute the following:

𝑙𝑜𝑠𝑠 = −
|𝑠|∑︁
𝑖=0

𝑙𝑜𝑔

(︃
𝑒𝑀(𝑠)𝑖∑︀
𝑗 𝑒

𝑀(𝑠)𝑗

)︃
(3.1)

To obtain a value that lies within the range of [0,∞), we use an exponential. Our

final score is computed as follows:
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𝑠𝑐𝑜𝑟𝑒 = 𝑒𝑙𝑜𝑠𝑠 = −
|𝑠|∑︁
𝑖=0

(︃
𝑒𝑀(𝑠)𝑖∑︀
𝑗 𝑒

𝑀(𝑠)𝑗

)︃
(3.2)

Because of the exponential, higher language model scores indicate that a sample is

less grammatical. To determine a cutoff score for this step in the validation process,

we scored all of the captions that we had collected so far and sorted them by increasing

language model score. We were then able to qualitatively see how the quality of the

caption varied with the language model score. The lowest score was about 1, the

mean score was approximately 20, and the max score was over 1,000. A histogram

of all scores is shown in Figure 3-2. We decided on a cutoff score of 80, which was a

higher threshold than 90% of the existing data. The remaining 10% was mostly the

low-quality data that we had set out to remove in the first place, which confirmed

that this was a useful addition to the validation procedure.

Figure 3-2: A histogram of the language model scores of all of the samples collected
for Spoken ObjectNet-50k (excluding those that were rejected).
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Figure 3-3 shows examples of captions and their corresponding language model

scores. Higher scoring captions are generally longer, contain more detailed descrip-

tions, and may have fewer ASR errors than lower scoring captions.

Figure 3-3: Examples of several captions, their corresponding language model score,
and the approximate percent of all captions that have lower language model scores
than the one shown.

In the current form, the validation procedure consists of all three checks, performed

one after another. Samples must be at least one second long, contain at least four

words in the ASR transcript, and score less than 80 on the language modeling score.

Each check prevents a different type of low-quality submission from being accepted,

and in practice we have found that having all three present results in high-quality

collected captions with minimal manual analysis required.
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3.3 Evaluation Server

In practice, it was very helpful to inspect some of the incoming data to ensure that

the instructions were clear and the collected data was high-quality. While this was

made easier by the automated validation steps described in Section 3.2, manually

inspecting the data still provided us feedback on our task and the approach to data

collection that we had taken.

Manually copying data from the file system it was saved to at any significant scale

was infeasible, so we designed a web server built using the same Flask server that

the Amazon Mechanical Turk task was based off of. It is password protected, so any

potentially personal information like worker IDs and assignment IDs is protected. It

allows any number of trusted users to inspect any of the over 50,000 samples that

have been collected.

To improve the organization of the data and support our goal of being able to

focus our manual inspection efforts on the lowest-quality data, the samples on the

server are sorted by language model score. As input, the server takes in a text file

with paths to all of the audio samples that should be displayed on the server along

with the corresponding language model score of the ASR transcript of each audio

sample. Upon startup, the server creates a mapping to every image, audio sample,

and audio transcript. When requesting a page, the server fills in a Flask template

page with the corresponding image, text, and language model score. An example of

the Flask page is shown in Figure 3-4.

Starting from the sample with the highest language model score and working

down, we were able to review about 2,500 samples. Of these, some were low-quality

and removed from the final dataset. New HITs were posted to re-collect data for these

images. Most, however, were of a reasonable quality. We observed that transcription

errors could cause the language model score to increase significantly, and that was

often the reason why an otherwise acceptable caption would be scored highly.

Overall, designing this evaluation platform greatly increased the speed at which

we could manually inspect the data. It also made sharing the data with other col-
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Figure 3-4: An example screenshot of our validation server page. The image is dis-
palyed along with its audio caption and ASR transcript. The sample shown here has
the fourth-lowest language model score.
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Figure 3-5: Example mistakes made in ASR captioning, including substitutions and
deletions.

laborators easier, as they could quickly look at as many samples as they wanted

to.

3.4 Transcript Correction

The transcripts generated via automatic speech recognition were generally sufficient

for our validation steps, but they often contained errors. Most frequently, words would

be replaced with other, phonetically similar words and phrases. Figure 3-5 shows

several examples of mistakes that the ASR engine makes. In one instance, the ASR

engine transcribes the phrase "for mints" as "ferments", which is phonetically similar.

In the other image, the ASR engine omits the first part of a sentence, resulting in the

deletion of seven words from the transcript. While this doesn’t affect the performance

of any audio-visual models that are trained directly on the audio waveform, it can

impact the performance of image captioning models that are trained on the contents

of text transcript. The omission of key phrases has a negative impact on the quality

of the representations that those models learn from the text and image pairs.

To address this shortcoming, we decided to create another crowdworking task

in which workers would play the audio file and correct the transcripts. To simplify

things, we also built this on top of the existing Flask server. It works in a similar way

to the image captioning task, with a few key differences. First, the input to the server

is a list of all of the existing transcript files, not a list of all image files. We divide

the list of files into tasks in a similar way as before, with four transcripts per task.
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The original (uncorrected) transcripts are displayed one at a time and placed in an

editable text field. The worker can click a button to play the original audio file, then

edit the transcripts as the audio file plays. Once they have made all of their desired

edits to the captions, the workers can submit the transcript and proceed to the next

transcript, if applicable. Example submissions from workers are shown in Figure 3-6,

and the interface is shown in Figure 3-7. The instructions, which were again shown

above the correction interface, are included in Appendix A.2

Figure 3-6: Examples of original transcripts and the corrected transcripts received
from Amazon Mechanical Turk workers.

Just as in the image captioning task, we run inline validation steps to reduce

the acceptance rate of low-quality submissions. If the worker attempts to submit a

corrected transcript without listening to the audio clip, they are asked to retry and

an error popup appears. Similarly, workers are asked to try again if their submitted

transcript has fewer than four words. Upon submission, we mark the HIT as poten-

tially being fraudulent if the worker completed the task in less than 15 seconds. This

flags the submission for manual review later. The rest of the infrastructure is similar

to that used in the image captioning task, which makes review simple.

3.4.1 Comparison of AMT and Rev

After collecting corrected captions for 500 samples on Amazon Mechanical Turk, we

tested Rev, a video transcription service. They offered transcription services starting

at $1.25 per minute (at the time of our experiments). The primary metrics we were
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Figure 3-7: The interface workers used to correct transcripts. The text box automat-
ically populated with the original transcript, and workers could see an example on
the right hand side of the screen.

evaluating the two services on were cost and accuracy. Rev.com has a fixed rate and

hires professional transcription workers, while AMT workers are not professionals but

the price is adjustable. However, there is a minimum payment for AMT HITs for

both ethical (Hara et al., 2019) and economic reasons, as low-paying HITs will rarely

be accepted.

For comparison, we used the same 500 samples that were corrected on AMT to

create a 2.5 hour long video. The audio track of this video was a concatenation of all

of the original audio captions, with one second of silence added in between. The video

track was comprised of the still images corresponding to the active audio track, with

one second of an empty screen added in between. Although Rev accepts audio-only

files in its transcription service, we anticipated that the transcription workers would

be aided by visuals. Sometimes listening to the audio alone wasn’t enough to tell

what a worker was saying, and in those cases a visual reference helped.

Once we received our captions back from Rev, we qualitatively compared the AMT

and Rev corrected captions for each sample. Rev was faster and had a slightly lower

word error rate, but AMT was significantly less expensive and produced transcripts

of an acceptable quality. Based on these results, we decided to continue correcting

transcripts on AMT instead of switching to Rev. In the future, however, if quality,

convenience, or turnaround time are more important than cost, Rev would be a good

option.
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3.5 Additional Samples

Most popular image captioning datasets have 4 or 5 captions per image, as described

in Section 2.3. In order to create an image captioning challenge based on ObjectNet,

we needed to collect additional samples to reach that quantity of data. However,

collecting 4 or 5 samples for the entire set of 50,273 ObjectNet images was outside

the scope of this project. As a result, we decided to create a subset of 20,000 images

that would receive the full set of captions. We call this subset Spoken ObjectNet-20k,

or SON-20k.

SON-20k was constructed after the first set of captions was completed, so we used

the collected captions to inform its creation. Because one of the distinguishing features

of Spoken ObjectNet is that its captions are spontaneous speech and therefore feature

significantly more words per caption than other captioning datasets, we started by

looking at the existing captions for each image. A longer caption might suggest that

the image has more details, while a shorter caption might suggest that the image is

difficult to describe in some way (due to an unusual object orientation making object

identification difficult, for example). We decided to sample most of the images in the

20k subset from the images that produced longer captions, as these images are more

likely to be interesting from a captioning perspective. We also sampled from the more

difficult images, though, in order to ensure that the split was reflective of the difficulty

of the larger dataset. The 20k subset is balanced across classes in ObjectNet, too.

We used the same Amazon Mechanical Turk task to collect additional samples

for the 20k subset. We first collected one additional caption for each image, then

another, etc., until we reached our desired quantity of data. In its final form, Spoken

ObjectNet-20k will contain 5 samples for each of the 20,159 images in the subset, for

a total of 100,795 captions.
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Chapter 4

Dataset Analysis

4.1 Spoken ObjectNet-50k

An analysis of the 50k split of Spoken ObjectNet, with a total of 50,273 spoken lan-

guage captions, is presented here. Many captioning datasets, including QuerYD (On-

cescu et al., 2021), report the total size of the vocabulary as well as the number of

unique nouns, verbs, adjectives, and adverbs used in the captions. These metrics

provide insight into the distribution of captions, where a larger vocabulary generally

indicates that there is a greater diversity of audio and visual content for models to

learn from.

We analyzed the ASR transcripts of each of the 50,273 audio captions in Spoken

ObjectNet-50k to find the size of the vocabulary. To compute part-of-speech tags for

each caption, we used the Python spaCy library. Results are shown in Table 4.1.

Dataset Vocabulary

Dataset Speakers Words Nouns Verbs Adjectives Adverbs Avg. Length

SON-50k 1,030 18,780 11,666 3,252 2,324 478 21.2
SON-20k 1,710 25,768 15,910 4,506 3,236 630 23.6
Combined 1,792 27,554 16,959 4,812 3,453 667 22.6

Table 4.1: An analysis of the vocabulary of Spoken ObjectNet-50k, Spoken
ObjectNet-20k, and the combined datasets. Each category shows the number of
the unique speakers, words, etc. in each dataset.
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Vocabulary Comparison

Dataset Total Audio Words Nouns Verbs Adjectives Adverbs

SON-50k 155h 18,780 11,666 3,252 2,324 478
Places-50k 115h 20,140 11,212 4,332 2,963 620

Places Audio [11] 944h 51,764 27,074 11,293 8,271 1,660
QuerYD [25] 74h 28,515 8,825 3,551 3,128 907
DiDeMo [15] 67h 7,865 3,475 1,316 841 339

ACT [32] 31h 12,413 5,218 2,162 1,590 534

Table 4.2: A comparison of the vocabularies of Spoken ObjectNet, Places Audio, and
several other popular audio-visual event localization datasets.

POS Distribution

Dataset % Nouns % Verbs % Adjectives % Adverbs % Other

SON-50k 62.1 17.3 12.4 2.5 5.6
Places-50k 55.7 21.5 14.7 3.1 5.0

Places Audio [11] 52.3 21.8 16.0 3.2 6.7
QuerYD [25] 30.9 12.5 11.0 3.2 4.2
DiDeMo [15] 44.2 16.7 10.7 4.3 24.1

ACT [32] 42.0 17.4 12.8 4.3 23.4

Table 4.3: A comparison of the distribution of common parts of speech in Spoken
ObjectNet and other audio-visual datasets.

Spoken ObjectNet-50k has a comparable vocabulary to many other audio-visual

datasets, as shown in Table 4.2. Given that it is smaller than most of the other

datasets, the relatively large vocabulary speaks to the high average length of each

caption and the diversity of objects and poses in ObjectNet. When the images have a

lot of detail and the objects are in unusual settings, workers spontaneously captioning

the images with speech are inclined to use more words than they would otherwise.

Based on the analysis in Table 4.3, Spoken ObjectNet has a similar POS distribution

to Places Audio, which is likely due to the similarity in data collection strategies.

These datasets have significantly more nouns than the other audio-visual datasets,

which feature similar frequencies of verbs, adjectives, and adverbs, but significantly

fewer nouns.

Qualitatively, looking at examples of collected captions can generally indicate

how well workers understood the instructions and how relevant the captions are to
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Figure 4-1: Samples of images and ASR captions from Spoken ObjectNet-50k.
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the images. Figure 4-1 shows a number of samples from Spoken ObjectNet-50k. In

these examples, the caption describes the image in high detail. In most examples,

the caption describes both the main object of interest (the dataset class to which the

image belongs) and the background. Descriptions that include both the foreground

and the background (and therefore contain more words) allow models to learn richer

representations. All in all, Spoken ObjectNet-50k contains rich descriptions useful to

models that learn audio-visual correspondences.

4.2 Spoken ObjectNet-20k

Spoken ObjectNet-20k is intended to be used primarily for image captioning exper-

iments, so while caption richness is just as important to this subset of the data as

it is to Spoken ObjectNet-50k, the correspondences between the multiple captions

for each image are also important. Qualitatively, selecting images from this subset

and checking all of the captions submitted for that image to make sure they say

roughly the same thing is a simple but effective way to gauge how useful this dataset

is for image captioning. Several examples from Spoken ObjectNet-20k are shown in

Figure 4-2. In these examples, the captions share many words and phrases, and in

most cases the class to which the image belongs (hairtie and razor, respectively)

is explicitly named within the caption. The shared vocabulary between captions is

important in evaluating BLEU scores as well, which is particularly relevant in the

image captioning experiments described in Chapter 6.

Vocabulary statistics for this subset are shown in Table 4.1. Because we specif-

ically selected for captions that have a high average number of words in their ASR

transcripts, Spoken ObjectNet-20k has on average more words per caption than Spo-

ken ObjectNet-50k. It is also larger-scale than SON-50k, so it has a larger vocabulary.
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Figure 4-2: Two examples from Spoken ObjectNet-20k, with five captions per image.
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4.3 Places-50k

In order to compare the relative difficulties of training on Places Audio Captions

versus Spoken ObjectNet, we created a split of the original Places Audio Captions

dataset containing 48,273 training images (the same number of training samples as

in Spoken ObjectNet). We called this split Places-50k, and called the original Places-

400k. The validation set remains the same so we can directly compare the performance

of models trained on Places-50k with that of models trained on the full dataset.

This subset contains a comparable vocabulary to Spoken ObjectNet-50k. It has a

slightly higher number of unique words, but fewer unique nouns. The average length

of ASR captions in Places-50k is 19.1, versus 21.2 in Spoken ObjectNet-50k.

4.4 Dataset Splits

In practice, audio-visual models may learn information about the speaker’s micro-

phone instead of the content of the speech signal. If a worker annotated examples of

primarily one class (e.g. all images from the measuring_cup class), the model could

exploit that correlation during training to make predictions without ever learning

from the spoken words. To combat this, speakers were presented with images in a

random order, so models cannot exploit speaker information to predict class iden-

tity. The train, validation, and test splits were also constructed such that there is no

speaker overlap between any of the three sets.
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Chapter 5

Retrieval Experiments

With Spoken ObjectNet-50k now complete, we wanted to conduct a series of experi-

ments using the data in order to compare the relative difficulty of training on Spoken

ObjectNet-50k and Places-50k. In addition, we wanted to model how the dataset

can be used in practice and measure the performance of models in a transfer learning

setting.

5.1 Experimental Setup

The retrieval tasks that we conducted were from image to audio and audio to image.

In the image to audio setting, the model was presented with an image and tasked

with retrieving the most relevant audio captions from the dataset for that image.

The audio to image setting was the reverse. We report two results, recall at 1 and

recall at 10 (R@1 and R@10, respectively). For image to audio R@N, the model

is successful if any of the top N recalled audio waveforms are the correct match

to the given image (and vice versa for audio to image retrieval). Additionally, all

experiments were conducted with the ResDAVEnet-VQ Harwath et al. (2018) model

with all quantization layers turned off.

The license of ObjectNet 1 prohibits model parameters from being adjusted based

on the information in the dataset’s images. This is in line with the dataset’s intended

1See https://objectnet.dev/
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use as a test set for audio-visual models. As a result, we tested a setting in which

the image branch of the model (used to embed images into a joint embedding space)

was frozen. In this setting, only the parameters of the audio model and the final

embedding layer could be trained. We also conducted experiments to measure the ef-

fect of image model pretraining in the ResDAVEnet-VQ models. In some experiments,

the image branch ResNet was initialized with weights from a model trained on Im-

ageNet (Deng et al., 2009), while in other experiments the weights were randomly

initialized.

5.2 Implementation Details

All models were trained for 150 epochs with a batch size of 64 using the Adam (Kingma

& Ba, 2015) optimizer. We chose different learning rates depending on the setting,

however. During experiments with fully trainable image and audio branches, we used

the original learning rate of 2 ·10−4. When the image branch was frozen, we increased

the learning rate to 1 · 10−3. We chose this learning rate after conducting a sweep

over several different learning rates, ranging from 1 · 10−5 to 1 · 10−2. Models trained

with this learning rate had the highest validation recall scores, all other parameters

held constant.

For other parameters, we largely based our decisions on the hyperparameters

specified in the original ResDAVEnet-VQ paper (Harwath et al., 2018). Our learning

rate exponentially decayed by a factor of 0.95 every 3 epochs. During training, images

were resized such that their smallest dimension was 256 pixels, then a random 224

by 224 crop was taken from the image. During validation, the center 224 by 224 crop

was always taken. Images were also randomly flipped with a probability of 0.5.

We computed validation recall scores after every epoch of training. We report

the maximum validation recall score out of the 150 epochs as the score of the model.

Because Places Audio Captions does not have a pre-defined test set, this procedure

allowed us to make the best comparison between Spoken ObjectNet (which does have

1, 000 samples reserved as a test set) and Places Audio Captions.
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5.3 Transfer Experiments

To better understand how the bias controls in Spoken ObjectNet impact transfer

performance from other spoken caption datasets, we ran transfer learning experi-

ments with a model trained on Places Audio. The original model was the best

ResDAVEnet-VQ model (without any vector quantization layers enabled) that was

trained on Places-400k. This model achieved a mean R@10 of 0.735 on the Places-

400k validation set (Harwath et al., 2020). There are two ways in which Spoken

ObjectNet can be used as a test set: the first is for evaluating zero-shot performance

(where the model undergoes no fine-tuning on Spoken ObjectNet), and the second is

for evaluating performance after fine-tuning with a frozen image branch (where only

the audio and embedding layers are fine-tuned). We also report the results of an

experiment in which the entire image branch was made trainable and thus fine-tuned,

strictly for comparison, as this setting is prohibited due to ObjectNet’s license.

Transfer from Places-400k to Spoken ObjectNet

I −→ A A −→ I Mean

Setting R@1 R@10 R@1 R@10 R@1 R@10

No Fine-tuning (Zero-shot) 0.019 0.096 0.033 0.140 0.026 0.118
Fine-tuning (Frozen image branch) 0.040 0.216 0.048 0.213 0.044 0.214

Fine-tuning (Trainable image branch) 0.102 0.391 0.115 0.416 0.108 0.403

Table 5.1: Results of retrieval experiments based on transfer learning from a model
trained on Places-400k.

The results are shown in Table 5.1. In the zero-shot setting, the model’s mean

R@10 performance decreases from 0.735 on Places to 0.118 on Spoken ObjectNet.

This shows that the model trained on Places can be directly applied to Spoken

ObjectNet, but the performance is much lower. For comparison, the chance R@10

(achievable by guessing uniformly at random from the entire dataset) is 0.010. Fine-

tuning the model with a frozen image branch recovers some of the performance, up

to a 0.214 mean R@10. When the image branch is made trainable, the performance

increases to a mean R@10 of 0.403. These experiments demonstrate that the con-
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trols for viewpoint, rotation, and background make it difficult for the image model

(trained on Places-400k) to meaningfully featurize the images in Spoken ObjectNet,

as fine-tuning the embedding layers and audio model without fine-tuning the entire

image model was not enough to recover the performance of the fully-trainable model.

5.4 Comparing Spoken ObjectNet & Places Audio

Table 5.2 compares the relative difficulties of Places-50k and Spoken ObjectNet

(SON), where the datasets are matched in size. By running these experiments, we

provide additional evidence that the difficulty of Spoken ObjectNet (and the perfor-

mance drop shown in the transfer setting) is due to the controls for bias. In the frozen

image branch setting, the model trained on Spoken ObjectNet performs significantly

worse than the model trained on Places-50k based on mean R@10. These results indi-

cate that the ImageNet-pretrained image model is more effective for Places-50k than

Spoken ObjectNet when it is kept frozen. However, this is a relatively small amount

of data to train these audio-visual models on. In general, ResDAVEnet-VQ is trained

on over 400,000 samples, not the 48,000 training samples in these datasets. Training

from scratch results in models that are still likely under-trained, so performance is

heavily based on how well the pretrained image branch transfers to the respective

datasets.

Frozen image branch

I −→ A A −→ I Mean

Dataset Pretraining R@1 R@10 R@1 R@10 R@1 R@10

SON ImageNet 0.064 0.291 0.060 0.268 0.062 0.279
Places-50k ImageNet 0.093 0.364 0.079 0.360 0.086 0.362

Table 5.2: Comparison of training on Spoken ObjectNet-50k versus Places-50k with
frozen image branches.

In Table 5.3, we show the results of two pairs of experiments in which the image

branch was trainable. While this setting will be prohibited due to ObjectNet’s license,

we show the results to give insight on the difficulty of Spoken ObjectNet versus
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Places. In the first experiment, the image branch was pretrained on ImageNet. In this

experiment, the performance of the model trained on Spoken ObjectNet increases by

approximately 20% relative to its frozen counterpart. However, the model trained on

Places-50k with a trainable image branch actually decreases in performance compared

to the frozen image branch model. This decrease in performance is surprising, and as a

result the mean R@10 scores of both models are roughly equivalent. This is likely due

to the class overlap between ImageNet and ObjectNet. With a relatively small number

of training samples, the model is able to learn enough about the viewpoint, rotation,

and background controls applied to objects it already knows about to increase its

performance. On the other hand, when the parameters of the Places-50k image

model are adjusted on a relatively small set of Places images it results in a featurizer

that performs worse than the original frozen ImageNet-pretrained model.

Trainable image branch

I −→ A A −→ I Mean

Dataset Pretraining R@1 R@10 R@1 R@10 R@1 R@10

SON ImageNet 0.066 0.315 0.089 0.332 0.077 0.324
Places-50k ImageNet 0.067 0.306 0.081 0.335 0.074 0.321

SON None 0.017 0.123 0.016 0.132 0.017 0.128
Places-50k None 0.027 0.139 0.026 0.145 0.026 0.142

Table 5.3: Comparison of training on Spoken ObjectNet-50k versus Places-50k with
trainable image branches.

In the second experiment, the image branch was still fully trainable, but not

pretrained on ImageNet. The model trained on Places-50k slightly outperforms the

model trained on Spoken ObjectNet, but by a small margin. This shows that without

any prior training on any other datasets, and thus without leveraging biases learned

from other datasets, Spoken ObjectNet and Places-50k are comparable in difficulty

to learn from.

The top 5 retrieved audio captions for two Spoken ObjectNet samples are shown

in Figure 5-1. The correct caption (boxed in green) is retrieved for the first example,

but none of the top 5 retrieved captions are the true caption for the second example.
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Figure 5-1: Top 5 retrieved audio captions for two sample images. The true caption
for the image (if applicable) is boxed in green.

Qualitatively, looking at the retrieved captions (both correct and incorrect) in this

example can provide insight into the representations that the model is learning. In

the first example, the term "white countertop" appears multiple times in the retrieved

captions. The word "countertop" appears in the true caption as well. This suggests

that one of the most salient features in the image is the countertop. Additionally, sev-

eral captions use the word "holding". This suggests that the model has learned some

representation of when objects are held in a person’s hand, which occurs frequently

within ObjectNet.

Similarly, the retrieved captions for the second image provide insight into the

model’s learned representations, even though none of them are the true caption for
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the image. All of the top 5 captions mention color in some way - the green color of

the coat hanger, the red accents on the blanket, or the white color of the bedsheet.

One of the captions references a green and white tile floor, which might bear some

resemblance to the green coat hangar on top of a white blanket with a tile pattern.

Even though the model was ultimately incorrect, the relevant features found in the

impostor captions suggests that it is learning good cross-modal representations.

5.5 Analysis

In conclusion, the results of the retrieval experiments suggest that multimodal models

have a lower performance on Spoken ObjectNet than a comparable subset of the

Places dataset. This performance gap is due to the priors in the dataset, as when

those priors are removed (as it is in the zero-shot transfer setting) performance drops

dramatically, but when both models are trained from scratch on the same amount

of data (and the model can learn better representations that are not dependent on

dataset bias), the performance is almost equivalent. Next, we turn to another audio-

visual task, image captioning, to further explore the effects of bias controls in Spoken

ObjectNet.
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Chapter 6

Image Captioning Experiments

While Spoken ObjectNet-50k, with one caption per image, can support retrieval

experiments, Spoken ObjectNet-20k can support image captioning experiments be-

cause it contains multiple captions per image. We wanted to conduct captioning

experiments to both compare Spoken ObjectNet-20k against other image captioning

datasets and compare the change in performance of retrieval tasks with the change

in performance of captioning tasks.

6.1 Experimental Setup

In these experiments, models are provided with an image and asked to produce a nat-

ural language caption describing the contents of that image. In our experiments, we

use a CNN-LSTM-based model that employs self-critical sequence training (SCST),

as described in Section 2.6. This model builds up feature vectors using a ResNet-101

convolutional neural network, then decodes those representations into natural lan-

guage using a LSTM and an algorithm inspired by the field of reinforcement learning.

ObjectNet has a license that prohibits model parameters from being tuned on

images in the dataset, but because SCST uses a pretrained ResNet-101 model to

generate image features, no backpropogation is required on the image model. This

cooperates nicely with the license of ObjectNet. As a result, SCST can be applied to

Spoken ObjectNet as-is, although higher performance could perhaps be achieved by
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training the image model on the target dataset.

6.2 Implementation Details

We used the SCST FC-2k features, in which each image is encoded with a ResNet-101

model pretrained on ImageNet without any cropping or resizing. The final convolu-

tional layer is taken from this model and average pooling is applied to obtain a 2048-

dimensional vector. During training, we used a batch size of 64 and a learning rate

of 5 · 10−4. The rest of the model parameters were the same as in the original SCST

paper (Rennie et al., 2017), with 512-dimensional LSTM embeddings, a learning rate

decay factor of 0.8, and the Adam optimizer.

We trained this model in two stages. In the first warmup stage, the model is

trained without self-critical sequence training. After 30 epochs, we decrease the

learning rate to 5 · 10−5 and decrease the batch size to 10. We train for 600,000

more iterations, after which the language evaluation metrics rise considerably.

We conducted validation steps during training in regular intervals based on the

number of optimizer steps taken. In each of these validation steps, we computed

a number of language evaluation metrics, including BLEU (Papineni et al., 2002),

METEOR (Lavie & Agarwal, 2007), ROUGE (Lin, 2004), CIDEr (Vedantam et al.,

2015), and SPICE (Anderson et al., 2016). We report the evaluation results of the

epoch in which the highest CIDEr score was achieved.

6.3 Captioning From Scratch

Table 6.1 shows language evaluation metrics for several different machine captioning

experiments, trained on both COCO Captions and Spoken ObjectNet-20k. The ex-

periments without SCST show the evaluation metrics of the model after the 30 epochs

of warmup training, and the SCST results show the maximum results achieved during

the 600k additional training iterations.

On COCO, we achieve near the maximum score reported in the original SCST
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Language Evaluation Scores

Setting: train on COCO, evaluate on COCO

Setting BLEU-4 METEOR ROUGE CIDEr SPICE

COCO (no SCST) 28.8 24.3 52.4 90.8 0.17
COCO (with SCST) 30.6 24.8 53.5 101.8 0.18

Setting: train on SON-20k, evaluate on SON-20k

Setting BLEU-4 METEOR ROUGE CIDEr SPICE

SON-20k (no SCST) 5.7 9.1 27.3 4.4 0.03
SON-20k (with SCST) 11.9 11.3 32.8 6.6 0.05

Table 6.1: Results of training captioning models from scratch on both COCO Cap-
tions and SON-20k, with and without self-critical sequence training (SCST).

paper (Rennie et al., 2017), with a BLEU score of 30.6 and a CIDEr score of 101.8.

The language evaluation metrics improve considerably during SCST, as the BLEU

score rises 2 points and the CIDEr score improves by 11 points. Based primarily on

the SCST experiments, which are the main experiments of interest in this chapter,

this captioning model performs very well on the COCO Captions dataset.

However, there is a significant performance drop when the same model is trained

from scratch on Spoken ObjecNet-20k. Without SCST, the model achieves a BLEU

score of just 5.7 and a CIDEr score of 4.4 - a dramatic drop from the 28.8/90.8 scores

when trained on COCO Captions, even without SCST. When trained with SCST,

the language evaluation scores undergo a significant relative improvement, but the

model still performs significantly worse than the model trained on COCO Captions.

The BLEU score doubles to 11.9, and the CIDEr score increases to 6.6.

From these experiments, it is clear that the model is less effective at captioning

ObjectNet images than COCO images under the same training regime, all else equal.

As in the retrieval experiments, part of the decrease may be due to the use of a CNN

pretrained on ImageNet. COCO images are often visually similar to ImageNet, and

neither contains any debiasing controls. ObjectNet, on the other hand, has controls

for biases and as such the CNN will not be as effective in producing useful features
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from those images. Overall, these results mirror those in the retrieval experiments,

specifically those in which the models used frozen image branches pretrained on Im-

ageNet.

6.4 Transfer Experiments

Table 6.2 details our results of our transfer experiments. We present results for

a zero-shot setting and a fine-tuning setting. In the zero-shot setting, the model

trained on COCO Captions is then evaluated on Spoken ObjectNet-20k without fine-

tuning on the dataset. In the fine-tuning setting, the model is allowed to train for

600k iterations with SCST before being evaluated. In these experiments, because the

features are pre-generated, the model is updating the parameters in its decoder using

the REINFORCE-like algorithm described in Section 2.6.

Transfer Experiments

Setting BLEU-4 METEOR ROUGE CIDEr SPICE

Zero-shot 7.2 10.6 28.7 4.5 0.04
Fine-tuning 8.1 10.8 28.5 5.2 0.04

Table 6.2: The results of several transfer experiments in which a model that was orig-
inally trained on COCO Captions was evaluated on SON-20k under several different
fine-tuning settings.

In the zero-shot setting, the model is not able to produce accurate captions for

the images. The language evaluation metrics fall significantly from the evaluation

results on MS-COCO, as shown in Table 6.1. In some ways, it is surprising that

the model does so poorly on ObjectNet images. To humans, the images are not all

that different. To the model, however, the novel object classes, unusual orientations,

and backgrounds of the objects in ObjectNet are enough to substantially reduce

performance.

In the fine-tuning setting, performance is slightly better than in the zero-shot

setting. Just as in the retrieval experiments, training the model on the audio or

textual components of Spoken ObjectNet, even without training the image branch,
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recovers some of the performance lost in the zero-shot setting. We do not show results

for a captioning experiment in which the image model is trained because the SCST

model uses pre-processed features, but it would be expected to further increase the

performance of the model at the expense of violating ObjectNet’s license.

Surprisingly, the fine-tuned model is not able to match the performance of the

model trained from scratch. This is most likely due to the decayed learning rate, which

may be too low to effectively learn new representations after learning representations

tuned for COCO for over 600k steps. We leave improvement of the fine-tuning setting

to future work, as our primary goal is to show that performance is poor in the zero-

shot setting, but some performance can be recovered by fine-tuning.

6.5 Additional Models

To further explore the decrease in performance of models trained from scratch on

Spoken ObjectNet, we conducted additional experiments using other image caption-

ing models. The first of these models is an attention-based captioning model also

introduced in Rennie et al. (2017), referred to in the paper as att2in. The key differ-

ence between this model and the FC model is that attention layers re-weight the CNN

features produced by the ResNet101 during preprocessing. This allows the model to

improve the features used as input for captioning.

We also test a simple baseline model that only attempts to train a LSTM decoder

using constant input. While not useful in practice, this model gives a baseline idea

of how much performance can be recovered from simply predicting tokens that com-

monly appear in the captions. Intuitively, n-grams like "a man", "a woman", and "is

sitting" are likely to occur frequently in the dataset, so an above-chance performance

is possible even without using image features.

Results from both of these models are shown in Table 6.3. In each experiment,

the model was trained for 30 epochs, and we select the scores from the highest-

performing epoch based on CIDEr scores. Unlike the above experiments, we did not

use self-critical sequence training in these experiments.
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Other Models: Language Evaluation Scores

Setting: train on COCO, evaluate on COCO

Model BLEU-4 METEOR ROUGE CIDEr SPICE

Att2in 29.2 24.6 52.7 93.1 0.18
Baseline LSTM 4.4 11.2 32.2 7.5 0.02

Setting: train on SON-20k, evaluate on SON-20k

Setting BLEU-4 METEOR ROUGE CIDEr SPICE

Att2in 8.2 10.8 28.7 6.2 0.05
Baseline LSTM 2.7 7.2 25.3 2.2 0.01

Table 6.3: Results of our additional captioning experiments on both COCO Captions
and SON-20k.

In general, the Att2in model performs better than the FC model without self-

critical sequence training, but worse than the FC model with SCST. The performance

dropoff between COCO and Spoken ObjectNet-20k is approximately the same, further

confirming the difficulty of Spoken ObjectNet-20k as compared to COCO Captions.

The baseline model performs poorly on both datasets, which is expected. Its per-

formance is slightly lower on Spoken ObjectNet-20k than COCO Captions, but not by

the same margin as in other experiments. Interestingly, the baseline is lower, but not

all that different from the results of the FC and Att2in models on Spoken ObjectNet-

20k. This suggests that a model that doesn’t use image features can achieve about

half of the performance of a model that does use image features on SON-20k. We

hypothesize that the image features, then, are not that useful to the model during

captioning. This aligns with our expectation that an ImageNet-pretrained feature ex-

tractor (as these models use) would be much less effective at extracting features from

ObjectNet images than COCO images. The baseline experiments provide evidence

to support that conclusion.

Overall, these additional experiments with several other models serve to provide

further evidence that SON-20k is a more challenging dataset to train certain caption-

ing models on than COCO Captions.
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6.6 Generated Captions

Lastly, we qualitatively evaluated the performance of the captioning models by having

several of our trained models generate captions based on 100-image subsets of the

validation sets of both COCO and ObjectNet. Figure 6-1 shows captions generated

for the COCO dataset by the model trained on COCO Captions with SCST. Overall,

these captions are very grammatical and accurately reflect the contents of the image.

Figure 6-2 shows the captions generated by the same model on ObjectNet images.

Unlike the first setting, the model struggles to produce accurate captions. In many

cases, the generated caption doesn’t seem to reference the contents of the image at

all.

6.7 Analysis

These captioning experiments suggest that models that are trained on standard image

captioning datasets then evaluted on Spoken ObjectNet suffer significant performance

decreases, mirroring the result of our retrieval experiments in Chapter 5. In particular,

the generated captions in Figures 6-1 and 6-2 are a reminder of how brittle many of the

state-of-the-art machine learning models in existence today are. Overall, conducting

these image captioning experiments provided us with additional evidence for the

trends discovered in our retrieval experiments while simultaneously experimenting

with the approximately 80,000 samples included in Spoken ObjectNet-20k that are

not in Spoken ObjectNet-50k.
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Figure 6-1: Examples of captions for COCO images produced by our model trained
on COCO Captions.
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Figure 6-2: Examples of captions for ObjectNet images produced by our model trained
on COCO Captions. This is the zero-shot setting described in Table 6.2.
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Chapter 7

Conclusion

In conclusion, we present Spoken ObjectNet, a novel large-scale bias-controlled spoken

caption dataset. Spoken ObjectNet is best used as a test set for audio-visual models

trained on other datasets. It can provide a better indication of how well a model will

generalize to real-world data than held-out data from the original training dataset.

To collect samples for Spoken ObjectNet, we developed some novel components in

the data collection pipeline, including the language modeling checks detailed in Chap-

ter 3. This improved the overall quality of our captions and decreased the amount

of manual validation required. In addition, we developed an evaluation server that

allowed us to quickly view the entire corpus of collected captions and determine how

effective our language modeling score was. In the last part of our data collection

pipeline, we created a transcript correction task and evaluated several different tran-

scription services on the basis of cost and accuracy.

An analysis of our dataset shows that it contains a comparable vocabulary to other

popular large-scale audio-visual datasets. We present two splits of Spoken ObjectNet,

called Spoken ObjectNet-50k and Spoken ObjectNet-20k. Spoken ObjectNet-50k

contains one caption for each image in the ObjectNet dataset and is intended to test

audio-visual models. Spoken ObjectNet-20k, on the other hand, is primarily intended

for image captioning. It features 5 images per caption, but for a smaller subset of

approximately 20,000 ObjectNet images.

In both retrieval experiments and image captioning experiments, models suffered
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significant performance drops when trained on other datasets and then evaluated on

Spoken ObjectNet. In both cases, the performance of the models was limited by

their ability to produce meaningful representations of the ObjectNet images, which

did not feature the same biases encoded into their previous training datasets. These

experiments provided insight into the properties of this dataset and confirmed that

controls for image biases can impact the performance of audio-visual models.

7.1 Dataset Release

We plan on releasing Spoken ObjectNet to the public under the Creative Commons

Attribution 4.0 license. This is the same license that the original ObjectNet dataset

uses, but while ObjectNet prohibits models from being trained on its images we do

not make the same restriction on the audio files in Spoken ObjectNet. Models may be

tuned on the audio waveforms in Spoken ObjectNet, but the restriction on training

on images still applies. Models must test either zero-shot transfer performance or

train with a frozen image branch on Spoken ObjectNet.

7.2 Future Work

Beyond simply providing researchers with a new dataset to use in their evaluation

pipelines, we wish to inspire a broader conversation about the current limitations of

modern machine learning through this work. While the sudden explosion of deep

learning has improved the performance of machine learning models, the rate at which

this change is occurring makes it incredibly difficult to carefully consider the benefits

and limitations of every emerging technique. In general, too, promising new results

produce more excitement than careful analyses of existing results. Given the increas-

ing integration of deep learning-enabled systems into our daily lives, then, it may be

time to take a step back and examine the current state of the field.

The limitations of some modern models can be seen in Figure 6-2. Here, a model

that performs very well on a traditional image captioning task produces nonsensical
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captions for images that are visually very similar to humans. More broadly, training

models on large-scale datasets like MS-COCO produces models that produce great

results for images in the training set, good results for held-out images that are still

in the original distribution of data, and poor results for any images that are not in

the same distribution of data. In image captioning, poor performance on that data

might not have a significant effect; perhaps an incorrect alt-text is generated for an

image on a social network. As machine learning is integrated into more sensitive

fields like medicine, however, the risk is greater. Society’s expectation that all people

should receive equal treatment, all else equal, has the potential to be subverted by

machine learning models that learn from fundamentally biased information and have

no concept of ethical decision-making.

There is a solution, though. We believe that through careful engineering of the

entire machine learning pipeline - from data collection to embedding in production

systems - it is possible to construct a system that is capable of making predictions

with a minimal adverse effect from learned bias. After all, systems that make unbiased

predictions are more trustworthy, more explainable, and no less capable than other

systems. Our work here is an attempt to de-bias the dataset development component

of the pipeline. In the same vein, we hope that this work inspires future research in

the other components of the pipeline.
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Appendix A

Instructions

The following sections contain the instructions we used in our Amazon Mechanical

Turk tasks to instruct workers on how to complete the image captioning and transcript

correction HITs.

A.1 Image Captioning Task

Disclaimer: This HIT is part of a MIT scientific research project. Your decision to

complete this HIT is voluntary, and your responses are anonymous. The results of

the research may be presented at scientific meetings, published in scientific journals,

or made publicly available to other researchers. Clicking on the ’Submit’ button

indicates that you are at least 18 years of age, you are a native English speaker, and

you agree to complete this HIT voluntarily. Because this scientific research study

requires a balanced amount of speech collected from many different individuals, we

can only accept up to 3,000 HITs from any single worker.

Notice: If you encounter any issues or find any bugs, please email us with the

copy-pasted text of any error messages you receive, and we will do our best

to fix them. If you consistently encounter this error, please do not continue to

attempt to complete more HITs, and instead email us with some information

about your system configuration including your operating system and web browser

version.
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Requirements: To complete this task, you must be in a relatively quiet en-

vironment on a computer equipped with a microphone, using one of the following

web browsers: Edge, Chrome, Firefox, Safari, or Opera. You must have cookies

enabled or you will be unable to submit the HIT.

Instructions: You will be submitting audio recordings using the interface below.

1. When prompted, grant permission to the site to use your microphone for the

duration of the HIT.

2. Use the volume meter in the bottom-right of the window to help ensure that

your microphone is working properly, and that you are a proper distance away

from it. The meter should move as you speak. If the volume meter does

not move, or if the recording button is disabled, please check to make

sure that you have given permission to your web browser to access

your microphone.

3. Press the green "Record" button to start recording. After you press it, the

button will turn into a red "Stop" button.

4. Complete the task as described below.

5. Press the red "Stop" button to stop recording. After you press it, your audio

recording will be processed automatically.

6. If your recording is acceptable, you will be prompted with the next photo.

Otherwise, you will be asked to try recording again.

7. Once you have submitted all the necessary recordings, press the green "Submit"

button to submit the HIT.

Task: Throughout the task, on the left of the screen you will be presented with

4 different images, one at a time. Please record yourself describing each image

as if you were explaining it to someone who could not see it. We’re looking

for a couple of sentences per image. You can talk about specific objects, locations,

shapes, colors, etc. in the image. For help, refer to the example on the right.
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A.2 Transcript Correction Task

Disclaimer: This HIT is part of a MIT scientific research project. Your decision to

complete this HIT is voluntary, and your responses are anonymous. The results of

the research may be presented at scientific meetings, published in scientific journals,

or made publicly available to other researchers. Clicking on the ’Submit’ button

indicates that you are at least 18 years of age, you are a native English speaker, and

you agree to complete this HIT voluntarily. Because this scientific research study

requires a balanced amount of speech collected from many different individuals, we

can only accept up to 3,000 HITs from any single worker.

Notice: If you encounter any issues or find any bugs, please email us with the

copy-pasted text of any error messages you receive, and we will do our best

to fix them. If you consistently encounter this error, please do not continue to

attempt to complete more HITs, and instead email us with some information

about your system configuration including your operating system and web browser

version.

Requirements: To complete this task, you must be able to listen to short audio

clips and use a keyboard. You must use one of the following web browsers: Edge,

Chrome, Firefox, Safari, or Opera. You must have cookies enabled or you will be

unable to submit the HIT.

Instructions: You will be listening to audio clips and correcting their automati-

cally generated transcripts using the interface below.

1. You may use the "Play example" button to ensure that your audio playback

system is working properly. If you click the button and do not hear a sound,

please double check your system settings to ensure you can hear audio playback.

2. Press the green "Play" button to begin playback of the sound clip.

3. Use the text box on the left to transcribe the contents of the audio clip. To

help you do so, the box is pre-filled with automatically generated text that may

contain errors.
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4. Press the "Submit" button when you have finished correcting the transcript.

5. Once you have submitted all the necessary transcripts, press the green "Submit"

button to submit the HIT.

Task: Use the green "Play" button to listen to an audio clip. Using the text box

on the left, correct the audio transcription. You should fix incorrectly transcribed

words and add punctuation, but don’t add words that are not in the recording. When

you are done, click the green "Submit" button. For help, refer to the example on the

right.
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